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Abstract

The paper deals with the plane-strain vibrations of thick walled hollow, composite poroelastic cylinder. The
frequency equations of axially and non-axially symmetric vibrations, each for pervious and impervious surfaces are

obtained using the analytical model based on Biot's theory of wave propagation in ¯uid-saturated porous media. In
case of axially symmetric vibrations, dilatational and shear modes are uncoupled, while in non-axially symmetric
vibrations, dilatational and shear modes are coupled. The plot of frequency versus ratio of wall thickness to inner

radius of composite cylinder for di�erent materials is presented, and then discussed. For axially symmetric
vibrations, two limiting cases of ratio of wall thickness to inner radius of composite cylinder are considered, i.e.,
when these ratios are very small and very large. The ®rst limiting case corresponds to modes of thin poroelastic shell

and plate, while in the second limiting case, modes of poroelastic solid cylinder is obtained. Thus, the problem of
axially symmetric vibrations describes a transition from the case of plate, thereby thin shell to analogous
pochammer case of poroelastic solid cylinder. The results of purely elastic solid are shown as a special case. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The free vibrations of a solid cylinder of isotropic elastic material is given in Love (1944). Gazis
(1958) studied the free vibrations of an in®nite thick-walled hollow elastic cylinder with ratio of wall
thickness to inner radius.

Using the analytical model based on Biot's theory of wave propagation, the free vibrations of an
in®nite isotropic poroelastic material is studied by Tajuddin (1978) taking general displacement
components of vibratory system following the analysis of Zamanaek (1971). A review of the work based
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on Biot's theory is given by Paria (1963). Tajuddin (1982, 1984) and Tajuddin and Moiz (1984) studied
Rayleigh waves in a poroelastic half-space and on curved surfaces, both a convex and a concave surface.
A historical formulation of porous media theories is given by Boer and Ehlers (1988). Some problems
revealing interesting phenomena which characterise Biot's theory are considered by several authors
(Burridge and Vargas, 1979; Jenkins, 1980; Kassir et al., 1989; Jensen et al., 1994; Rajapakse and
Senjuntichai, 1995; Chein and Herrmann, 1996).

In the present analysis, the free vibrations of an in®nite thick-walled hollow poroelastic cylinder is
studied both for axially symmetric and non-axially symmetric vibrations, each for a pervious and an
impervious surface. It is assumed that the porous material is homogeneous and isotropic. The frequency
equation in each case is derived and discussed. It is intended to describe the transition from the case of
a plate thereby thin shell to the analogous case of a poroelastic solid cylinder. Two cases are considered
for the ratio of wall thickness (h ) to inner radius (r1) i.e., h/r1. As a ratio of wall thickness to inner
radius tends to zero, modes of an in®nite poroelastic plate of thickness equivalent to wall thickness are
obtained. All the modes of the thick-walled hollow cylinder approach asymptotically to the analogous
modes for a poroelastic solid cylinder of radius (h ) as the ratio hrÿ11 4 1. Also, it is seen that
extensional and shear modes will exist uncoupled in case of axially symmetric vibrations, while it is not
true for non-axially symmetric vibrations.

The considered problem is of great practicable interest, particularly in civil engineering, ceramic
industry where the frequency of thick-walled hollow poroelastic cylindrical structures play an important
role. The investigation can also be applicable in Bio-Mechanics, wherein osseous tissue, bony elements
saturated with ¯uid are approximated by hollow poroelastic cylinder.

2. Governing equations

The equations of motion of a poroelastic solid (Biot, 1956) in presence of dissipation (b ) are

Nr2~u� �A�N �re�QrE � @2

@ t2
�r11 ~u� r12 ~U� � b

@

@ t
�~uÿ ~U�,

Qre� RrE � @2

@t2
�r12 ~u� r22 ~U� ÿ b

@

@t
�~uÿ ~U�, �1�

where H2 is the Laplacian, ~u (u, v, o ) and ~U (U, V, O ) are solid and liquid displacements, e and E are
the dilatations of solid and liquid; A, N, Q, R are poroelastic constants; and rij are mass coe�cients
following Biot (1956). The relevant solid stresses sij and liquid pressure s are

sij � 2Neij � �Ae�QE�dij �i, j � 1, 2, 3�,

s � Qe� RE: �2�
In Eq. (2), dij is the well-known Kronecker delta function.

3. Solution of the problem

Let (r, y, z ) be cylindrical polar co-ordinates. Consider a thick-walled homogeneous isotropic in®nite
poroelastic cylinder with inner and outer radii r1 and r2, respectively, whose axis is in the direction of
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z-axis. Then the solid displacements ~u (u, v, o ) which can be readily be evaluated from Eq. (1)
representing steady-state harmonic vibrations are

u�r, y, t� � ÿ
�
C1z1

�
Jn�1�z1r� ÿ

n

z1r
Jn�z1r�

�
� C2z1

�
Yn�1�z1r� ÿ

n

z1r
Yn�z1r�

�
� C3z2

�
Jn�1�z2r�

ÿ n

z2r
Jn�z2r�

�
� C4z2

�
Yn�1�z2r� ÿ

n

z2r
Yn�z2r�

�
� A1

n

r
Jn�z3r� � B1

n

r
Yn�z3r�

�sin

cos

�ny�eiot,

v�r, y, t� �
�
C1

n

r
Jn�z1r� � C2

n

r
Yn�z1r� � C3

n

r
Jn�z2r� � C4

n

r
Yn�z2r� � A1z3

�
Jn�1�z3r�

ÿ n

z3r
Jn�z3r�

�
� B1z3

�
Yn�1�z3r� ÿ

n

z3r
Yn�z3r�

��sin

cos

�ny�eiot,1 �3�

where o is the frequency of wave, n is the integer number of waves around the circumference, C1, C2,
C3, C4, A1, B1 are all constants, and

zi �
o
Vi
: �i � 1, 2, 3� �4�

In Eq. (4), V1, V2 and V3 are dilatational wave velocities of ®rst and second kind and shear wave
velocity, respectively (Biot, 1956). By substituting the displacement functions, u, v in Eq. (2), the relevant
stresses are

srr � s � �C1M11�r� � C2M12�r� � C3M13�r� � C4M14�r� � A1M15�r� � B1M16�r��sin
cos �ny�eiot, �5�

sry � �C1M21�r� � C2M22�r� � C3M23�r� � C4M24�r� � A1M25�r� � B1M26�r��cos
sin �ny�eiot, �6�

s � �C1M31�r� � C2M32�r� � C3M33�r� � C4M34�r��sin
cos �ny�eiot, �7�

@s

@r
� �C1N31�r� � C2N32�r� � C3N33�r� � C4N34�r��sin

cos �ny�eiot, �8�

where the coe�cients Mij and Nij are

M11�r� �
�
2N

�
n�nÿ 1�

r2
ÿ z21

�
ÿ �A�Q�z21 � �Q� R�z21d21

�
Jn�z1r� �

2Nz1
r

Jn�1�z1r�,

M15�r� � 2Nnz3
r

Jn�1�z3r� �
2Nn�1ÿ n�

r2
Jn�z3r�,

M21�r� � 2Nn�nÿ 1�
r2

Jn�z1r� ÿ
2Nnz1

r
Jn�1�z1r�,

1 This notion justi®es the existence of either shear vibrations or extensional vibrations when n=0.
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M25�r� � N

�
2n�1ÿ n�

r2
� z23

�
Jn�z3r� ÿ

2Nz3
r

Jn�1�z3r�,

M31�r� � �Rd21 ÿQ�z21Jn�z1r�,

N31�r� �
�
Rd21 ÿQ

r

�
z21nJn�z1r� � �Qÿ Rd21�z31Jn�1�z1r�,

M12(r ), M16(r ), M22(r ), M26(r ), M32(r ), N32(r ) are similar expressions as M11(r ), M15(r ), M21(r ),
M25(r ), M31(r ), N31(r ) with Jn and Jn + 1 replaced by Yn and Yn+1, respectively

M13(r ), M23(r ), M33(r ), N33(r ), are similar expressions as M11(r ), M21(r ), M31(r ), N31(r ) with z1 and
d1 replaced by z2 and d2, respectively,

M14(r ), M24(r ), M34(r ), N34(r ), are similar expressions as M11(r ), M21(r ), M31(r ), N31(r ) with z1, d1,
Jn and Jn + 1 replaced by z2, d2, Yn and Yn + 1, respectively. (9)

In Eq. (9), d 2
1 and d 2

2 are

d21 � ��RM11 ÿQM12� ÿ V ÿ21 �PRÿQ2���RM12 ÿQM22�ÿ1,

d22 � similar expression as d21 with V ÿ21 replaced by V ÿ22 ,

where P (=A+2N ) is a poroelastic constant, and M11, M12, M22 are

M11 � r11 ÿ iboÿ1, M12 � r12 � iboÿ1, M22 � r22 ÿ iboÿ1: �10�

4. Frequency equation

The boundary conditions for free vibrations in case of a previous surface is

srr � s � 0, sry � 0, s � 0 at r � r1 and r � r2, �11�
while the boundary conditions for free vibrations in case of an impervious surface is

srr � s � 0, sry � 0,
@s

@r
� 0,at r � r1 and r � r2: �12�

Eqs. (5)±(7) with (11) result in a system of six homogeneous equations in C1, C2, C3, C4, A1 and B1. A
nontrivial solution can be obtained if the determinant of the coe�cients must vanish. Thus the
frequency equation for a pervious surface is������������

M11�r1� M12�r1� M13�r1� M14�r1� M15�r1� M16�r1�
M21�r1� M22�r1� M23�r1� M24�r1� M25�r1� M26�r1�
M31�r1� M32�r1� M33�r1� M34�r1� 0 0
M11�r2� M12�r2� M13�r2� M14�r2� M15�r2� M16�r2�
M21�r2� M22�r2� M23�r2� M24�r2� M25�r2� M26�r2�
M31�r2� M32�r2� M33�r2� M34�r2� 0 0

������������
� 0: �13�

In case of an impervious surface, Eqs. (5), (6), (8) with (12) give the frequency equation

P.M. Reddy, M. Tajuddin / International Journal of Solids and Structures 37 (2000) 3439±34563442



������������

M11�r1� M12�r1� M13�r1� M14�r1� M15�r1� M16�r1�
M21�r1� M22�r1� M23�r1� M24�r1� M25�r1� M26�r1�
N31�r1� N32�r1� N33�r1� N34�r1� 0 0
M11�r2� M12�r2� M13�r2� M14�r2� M15�r2� M16�r2�
M21�r2� M22�r2� M23�r2� M24�r2� M25�r2� M26�r2�
N31�r2� N32�r2� N33�r2� N34�r2� 0 0

������������
� 0: �14�

The elements Mij and Nij appearing in Eqs. (13) and (14) are de®ned in Eq. (9).
By ignoring the liquid e�ects in frequency Eq. (13), the analogous results of purely elastic solid of

Gazis (1958) are obtained as a special case. Due to dissipative nature of the medium, all waves are
attenuated. Since that attenuation presents some di�culty in the de®nition of wave velocity, we will set
b=0 in what follows. In addition, it is convenient to introduce non-dimensional variables as follows:

a1 � PH ÿ11 , a2 � QH ÿ11 , a3 � RH ÿ11 , a4 � NH ÿ11 ,

d1 � r11r
ÿ1
1 , d2 � r12r

ÿ1
1 , d3 � r22r

ÿ1
1 ,

~x � �V0V
ÿ1
1 �2, ~y � �V0V

ÿ1
2 �2, ~z � �V0V

ÿ1
3 �2,

and

b1 � P1H
ÿ1
1 , b2 � Q1H

ÿ1
1 , b3 � R1H

ÿ1
1 , b4 � N1H

ÿ1
1 ,

g1 � �r11�1rÿ11 , g2 � �r12�1rÿ11 , g3 � �r22�1rÿ11 , m � CC ÿ10

~x1 � �V0�V1�ÿ11 �2, ~y1 � �V0�V2�ÿ11 �2, ~z1 � �V0�V3�ÿ11 �2: �15�
In Eq. (15), C is the phase velocity, C0 and V0 are reference velocities (C 2

0=N1r
ÿ1
1 , V 2

0=H1r
ÿ1
1 ) then m

is non-dimensional phase velocity, and r1=(r11)1+2(r12)1+(r22)1, H1=P1+2Q1+R1. In all the
preceding, and what follows subscript `1' and ( )1 stand for the quantities related to inner cylinder.

Let

g � r2r
ÿ1
1 so that

h

r1
� gÿ 1 and O � oh

C0
� mkh: �16�

5. Axially symmetric vibrations

In what follows, we set n = 0 to consider the motion independent of angular co-ordinate. Then the
frequency Eq. (13) for a pervious surface degenerates into the product of two determinants each of
second and fourth order respectively, viz,����M25�r1� M26�r1�

M25�r2� M26�r2�
���� � 0, �17�

and
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��������
M11�r1� M12�r1� M13�r1� M14�r1�
M31�r1� M32�r1� M33�r1� M34�r1�
M11�r2� M12�r2� M13�r2� M14�r2�
M31�r2� M32�r2� M33�r2� M34�r2�

�������� � 0, �18�

or when written in full

�2lll2m1m2 ÿ l 22m
2
1 ÿ l21m

2
2�

k1�z2�k1�z1� � �l2n1m1m2 ÿ l1n1m
2
2�k1�z2��rÿ12 k3�z1� � rÿ11 k2�z1�� � �l1n2m1m2 ÿ l2n2m

2
1�k1�z1�

�rÿ12 k3�z2� � rÿ11 k2�z2�� �
m1m2n1n2

r1r2
�k3�z2�k2�z1� � k3�z1�k2�z2�

�k5�z1�k6�z2� � k5�z2�k6�z1�� ÿ
n22m

2
1

r1r2
k1�z1�k4�z2� �

n21m
2
2

r1r2
k1�z2�k4�z1� � 0: �19�

In Eq. (19), the elements appearing are

k1�z� � J0�zr1�Y0�zr2� ÿ J0�zr2�Y0�zr1�,

k2�z� � J1�zr1�Y0�zr2� ÿ J0�zr2�Y1�zr1�,

k3�z� � J0�zr1�Y1�zr2� ÿ J1�zr2�Y0�zr1�,

k4�z� � J1�zr1�Y1�zr2� ÿ J1�zr2�Y1�zr1�,

k5�z� � J1�zr1�Y0�zr1� ÿ J0�zr1�Y1�zr1�,

k6�z� � J1�zr2�Y0�zr2� ÿ J0�zr2�Y1�zr2�,

l1 � f�Q� R�d21 ÿ �P�Q�gz21, m1 � �Qÿ Rd21�z21,

n1 � 2Nz1, n2 � 2Nz2,

l2, m2 � similar expressions as l1 and m1 with z21 and d21 replaced by z22 and d22, respectively: �20�
Similarly, it can be seen that the frequency Eq. (14) for an impervious surface yields the product of two
determinants, each of second and fourth order, respectively. The second order determinant is the same
as in Eq. (17), while the fourth order determinant is��������

M11�r1� M12�r1� M13�r1� M14�r1�
N31�r1� N32�r1� N33�r1� N34�r1�
M11�r2� M12�r2� M13�r2� M14�r2�
N31�r2� N32�r2� N33�r2� N34�r2�

�������� � 0, �21�
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or when written in full

l1l2m1m2z1z2fk6�z2�k5�z1� � k2�z2�k3�z1� � k2�z1�k3�z2� � k6�z1�k5�z2�g

�l1n2m1m2z1z2k4�z2�frÿ12 k3�z1� � rÿ11 k2�z1�g � l2n1m1m2z1z2

frÿ11 k2�z2� � rÿ12 k3�z2�gk4�z1� �
2n1n2m1m2z1z2

r1r2
k4�z1�k4�z2�

ÿl 22m2
1z

2
1k4�z1�k1�z2� ÿ l21m

2
2z

2
2k4�z2�k1�z1� ÿ l1n1m

2
2z

2
2

frÿ12 k3�z1� � rÿ11 k2�z1�gk4�z2� ÿ l2n2m
2
1z

2
1frÿ12 k3�z2� � rÿ11 k2�z2�gk4�z2�

ÿn
2
1m

2
2z

2
2

r1r2
k4�z2�k4�z1� ÿ

n22m
2
1z

2
1

r1r2
k4�z1�k4�z2� � 0: �22�

In Eq. (22), ki(z ), (i=1, 2, . . . 6) l1, m1, n1, l2, m2, n2 are de®ned in Eq. (20).
It can be ascertained that Eq. (17) corresponds to zero dilatational potential, and thus gives the

frequency equation of axially symmetric shear modes. Similarly, Eqs. (18) and (21) correspond to zero
equivoluminal potential, and give the frequency equations of axially symmetric extensional modes of
pervious and impervious surfaces, respectively. It is, therefore, concluded that the shear and extensional
modes can exist uncoupled in case of axially symmetric vibration. In addition Eqs. (18) and (21) give the
distinct frequencies for pervious and an impervious surfaces, while Eq. (17) is independent of nature of
surface. Now, we shall discuss the shear vibrations and extensional vibrations independently.

5.1. Shear vibrations

By substituting Mij (r ) from Eq. (9) into Eq. (17), and using recurrence relations (Watson, 1962) the
frequency equation simpli®es to

J2�z3r1�Y2�z3r2� ÿ J2�z3r2�Y2�z3r1� � 0: �23�
In absence of dissipation, using non-dimensional quantities de®ned in Eqs. (15) with (16) into Eq. (23),
one obtains

J2�� ~z1b4�1=2O=�gÿ 1��Y2�� ~z1b4�1=2gO=�gÿ 1��

ÿJ2�� ~z1b4�1=2gO=�gÿ 1��Y2�� ~z1b4�1=2O=�gÿ 1�� � 0: �24�
Clearly, we see that Eq. (24) gives a relation between the ratio of wall thickness to inner radius (hrÿ11 )
and dimensionless frequency (O=oh/C0).

The frequency Eq. (23) will be discussed for limiting values of the ratio hrÿ11 given as follows:

5.1.1. For thin poroelastic cylindrical shell
When hrÿ11 <<1, and under the assumption z3h $ 0, it is seen that z3r1>>1 and z3r2>>1 so that the

Bessel functions J2(x ) and Y2(x ) can be approximated by the ®rst two terms of its Hankel asymptotic
series, which in turn, reduces the frequency Eq. (23) to
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1ÿ 225

64z23r1r2

!
sin�z3h� ÿ

15z3h

8z23r1r2
cos�z3h�10: �25�

Eq. (25) is the frequency equation for a thin cylindrical poroelastic shell. For z3r1 and z3r241 in Eq.
(25), the limiting frequencies are given by

sin�z3h� � 0: �26�
Then Eq. (26) gives

o � qpV3

h
, q � 1, 2, 3 . . . �27�

which are frequencies of shear modes of a poroelastic plate of thickness h.
Furthermore, near the origin hrÿ11 =0, and assuming z3h=qp+E� (E�<<1), one obtains from the

frequency equation of a thin cylindrical poroelastic shell Eq. (25) to be

E�1�hrÿ11 �2
"

15qp

�8qp�2 � 210�hrÿ11 �2
#
: �28�

Finally, we obtain

o1qp
h
V3

"
1� 15

�8qp�2 � 210�hrÿ11 �2
�hrÿ11 �2

#
: �29�

5.1.2. For poroelastic solid cylinder
When hrÿ11 >>1, Eq. (23) tends asymptotically to

J2�z3h� � 0: �30�
Eq. (30) is the well-known frequency equation of poroelastic solid cylinder of radius h discussed by
Tajuddin and Sarma (1980).

5.2. Extensional vibrations

Employing the non-dimensional quantities de®ned in Eqs. (15) with (16) into Eq. (18), one obtains the
frequency equation for a pervious surface to be

j Cij j� 0, �i, j � 1, 2, 3, 4� �31�
where the elements of determinant are

C11 � f�b2 � b3��d21�1 ÿ �b1 � b2�g ~x1b4O2J0�� ~x1b4�1=2O=�gÿ 1�� � 2b4� ~x1b4�1=2O�gÿ 1�J1�� ~x1b4�1=2O=�gÿ 1��

C21 � fb3�d21�1 ÿ b2g ~x1b4O2J0�� ~x1b4�1=2O=�gÿ 1��,
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C31 � f�a2 � a3�d21 ÿ �a1 � a2�g ~xb4O2J0�� ~xb4�1=2Og=�gÿ 1�� � 2a4� ~xb4�1=2Of�g

ÿ 1�=ggJ1�� ~xb4�1=2Og=�gÿ 1��,

C41 � fa2d21 ÿ a2g ~xb4O2J0�� ~xb4�1=2Og=�gÿ 1��,

C12, C32 � similar expressions as C11, C31 with J0, J1 replaced by Y0, Y1 respectively,

C13, C23 � similar expressions as C11, C21 with ~x1 and �d21�1 replaced by ~y1 and �d22�1, respectively,

C14 � similar expressions as C11 with ~x1, �d21�1, J0 and J1 replaced by ~y1, �d22�1, Y0 and Y1, respectively,

C22, C42 � similar expressions as C21, C41 with J0 replaced by Y0,

C24 � similar expressions as C21 with ~x1, �d21�1 and J0 replaced by ~y1, �d22�1 and Y0, respectively,

C33, C43 � similar expression as C31 with ~x and d21 replaced by ~y and d22, respectively,

C34 � similar expression as C31 with ~x, d21, J0 and J1 replaced by ~y, d22, Y0 and Y1, respectively,

C44 � similar expression as C41 with ~x, d21 and J0 replaced by ~y, d22 and Y0, respectively: �32�
Arguing on similar lines, in case of an impervious surface, we obtain the frequency equation to be

j Dij j� 0, �i, j � 1, 2, 3, 4� �33�
In Eq. (33), the elements Dij are

D21 � fb2 ÿ b3�d21�1g� ~x1b4�3=2O3J1�� ~x1b4�1=2O=�gÿ 1��,

D41 � fa2 ÿ a3d
2
1g� ~xb4�3=2O3J1�� ~xb4�1=2Og=�gÿ 1��,

D22, D42 � similar expression as D21, D41 with J1 replaced by Y1,

D23 � similar expression as D21 with ~x1 and �d21�1 replaced by ~y1 and �d22�1, respectively,

D24 � similar expression as D21 with J1, ~x1, and �d21�1 replaced by Y1, ~y1, �d22�1, respectively,

D43 � similar expression as D41 with ~x and d21 replaced by ~y and d22, respectively,

D44 � similar expression as D41 with ~x, d21 and J1 replaced by ~y, d22 and Y1, respectively,
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and

D11 � C11, D12 � C12, D13 � C13, D14 � C14,

D31 � C31, D32 � C32, D33 � C33, D34 � C34: �34�
The quantities Cij appearing in Eq. (34) are de®ned in Eq. (32).

Eqs. (31) and (33) gives a relation between the ratio hrÿ11 and nondimensional frequency O. For a
®xed hrÿ11 (=gÿ 1), mkh=O is a constant, hence the plot relating phase velocity (m ) and wave number
(kh ) is a rectangular hyperbola. The frequency (O) is computed for a trial values of hrÿ11 and then
included the limiting cases so that a transition from plate, thereby shell vibrations to that of poroelastic
solid cylinder can be obtained. The two types of material parameters employed for computational work
given by Biot (1956) are presented as follows:

Material Parameters

a1 a2 a3 a4 d1 d2 d3 xÄ yÄ zÄ b1 b2 b3 b4 g1 g2 g3 xÄ1 yÄ1 zÄ1

I 0.74 0.037 0.186 0.01436 0.5 0 0.5 2.725 0.673 34.82 0.61 0.0425 0.305 0.034193 0.5 0 0.5 1.671 0.812 14.623

II 0.61 0.042 0.305 0.03419 0.65 ÿ0.15 0.65 2.388 0.909 18.002 0.61 0.0425 0.305 0.034193 0.666 0 0.334 1.2121 0.996 19.477

The numerical results are presented in Figs. 1 and 2. It is seen that frequency is more for an
impervious surface than for a pervious surface. The values for material-II are more than that of
material-I. Following Achenbach and Epstein (1967), material-II is acoustically sti�er and material-I is
acoustically softer. Accordingly, the corresponding values for material-II are more than that of material-
I, which is true physically (Achenbach and Epstein, 1967).

Frequency Eqs. (19) and (22) will be discussed for limiting values of hrÿ11 given as follows:

5.2.1. For thin poroelastic cylindrical shell
In the limiting case hrÿ11 <<1, the frequency Eq. (19) for a pervious surface, by means of the

asymptotic approximations for the Bessel functions (Watson, 1962) yields

sin�z1h� sin�z2h�1�h=r1�2
�
2E1

z1h
L1 � 2E2

z2h
L2 � 8E3

z1z2h2
L3

�
: �35�

In Eq. (35), we have

E1 � N�l3m2
4 ÿ l4m3m4�E ÿ14 , E2 � N�l4m2

3 ÿ l3m3m4�E ÿ14 , E3 � N2m3m4E
ÿ1
4 ,

E4 � 2l3l4m3m4 ÿ l24m
2
3 ÿ l23m

2
4 ÿ 4N 2�m2

3z
ÿ2
2 ÿm2

4z
ÿ2
1 �rÿ21 ,

l3 � l1z
ÿ2
1 , l4 � l2z

ÿ2
2 , m3 � m1z

ÿ2
1 , m4 � m2z

ÿ2
2 ,

L1 � sin�z2h� cos�z1h�, L2 � sin�z1h� cos�z2h�, L3 � cos�z1h� cos�z2h� ÿ 1: �36�
Eq. (35) is the frequency equation of extensional modes for a thin poroelastic cylindrical shell.

For h/r14 0, the roots of Eq. (35) tend to the roots of
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Fig. 1. Axially symmetric vibrations: variation of frequency with h/r1 (composite cylinderÐI).

Fig. 2. Axially symmetric vibrations: variation of frequency with h/r1 (composite cylinderÐII).
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sin�z1h� sin�z2h� � 0, �37�
provided z1h, z2h$0, that is

sin�z1h� � 0, z1h � pp, p � 1, 2, 3 . . .

hence

o � ppV1

h
�38�

or

sin�z2h� � 0, z2h � qp, q � 1, 2, 3 . . .

hence

o � qpV2

h
: �39�

Eqs. (38) and (39) correspond to extensional modes of a poroelastic plate of thickness h.
The variation of the frequency-ratios z1h and z2h in the vicinity of h/r1=0 is traced by assuming

z1h=pp+E� and/or z2h=qp+E �1 with E�, E �1<<1. Thus if z1h=pp+E� and sin(z2h )$0, Eq. (35) yields

E�1 �hrÿ11 �2
pp�1ÿ �hrÿ11 �2�1=pp�KE2 cot�z2h��

�
E1 � KE3

pp

�
cos�z2h� ÿ �ÿ1� p

sin�z2h�
��

, �40�

and if z2h � qp� E�1 and sin�z1h� 6� 0, Eq. (35) yields

E�11 �hrÿ11 �2
qp�1ÿ �hrÿ11 �2�1=qp�KE1 cot�z1h��

�
E2 � E3

�
cos�z1h� ÿ �ÿ1�q

sin�z1h�
��
: �41�

In Eqs. (40) and (41), E1, E2, E3 are de®ned in Eq. (36) and K is given by

K � z1=z2 � V2=V1: �42�
The frequency Eq. (22) for an impervious surface by means of asymptotic approximations for the Bessel
functions, arguing as before, reduces to

sin�z1h� sin�z2h�1�h=r1�2�E5L1h
ÿ1 � E6L2h

ÿ1� � 2E7L3: �43�
In Eq. (43), the elements appearing are

E5 � �l1n1m2
2z

2
2 ÿ l1n2m1m2z1z2�E ÿ18 ,

E6 � �l2n2m2
1z

2
1 ÿ l2n1m1m2z1z2�E ÿ18 ,

E7 � l1l2m1m2z1z2E
ÿ1
8 ,

E8 � 2n1n2m1m2z1z2r
2
1 ÿ n21m

2
2z

2
2r
ÿ2
1 ÿ n22m

2
1z
ÿ2
1 rÿ21 ÿ l21m

2
2z

2
2 ÿ l22m

2
1z

2
1, �44�
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where L1, L2, L3 are de®ned in Eq. (36). The quantities l1, m1, n1, l2, m2, and n2 appearing in Eq. (44)
are de®ned in Eq. (20).

For hrÿ11 4 0 in Eq. (43), we obtain

sin�z1h� sin�z2h�12E7�cos�z1h� cos�z2h� ÿ 1�, �45�
from which one obtains

o � ppV1

h
, o � qpV2

h
, � p, q � 1, 2, 3, . . .� �46�

Eq. (46) corresponds to extensional modes of a poroelastic plate of thickness h in case of an impervious
surface.

5.2.2. For poroelastic solid cylinder
When hrÿ11 >>1, the non-dimensional quantities namely xÄ1, yÄ1, zÄ1, b1, b2, b3, b4, (d

2
1)1 and (d 2

2)1 tends
to xÄ, yÄ, zÄ, a1, a2, a3, a4, d

2
1 and d 2

2, respectively. Consequently the non-dimensional frequency Eqs. (31)
and (33) for pervious and impervious surfaces asymptotically reduce to

C �31C
�
43 ÿ C �33C

�
41 � 0 and C �31D

�
43 ÿ C �33D

�
41 � 0: �47�

In Eq. (47), the elements appearing are

C �31 � f�a2 � a3�d21 ÿ �a1 � a2�gOJ0�� ~xa4�1=2O� � 2a1=24 ~xÿ1=2J1�� ~xa4�1=2O��,

C �41 � �a3d21 ÿ a2�J0� ~xa4�1=2O�,

D�41 � �a2 ÿ a3d
2
1�� ~x�1=2J1�� ~xa4�1=2O�,

C �33, C
�
43, D

�
43 � similar expressions as C �31, C

�
41, D

�
41 with ~x and d21 replaced by ~y and d22, respectively: �48�

Eq. (47) corresponds to frequency equations of poroelastic solid cylinder of radius h for pervious and
impervious surfaces, respectively (Tajuddin, 1978).

6. Non-axially symmetric vibrations

When the n is non-zero, the dilatational and equivoluminal modes are coupled as indicated by the
frequency Eqs. (13) and (14) for both pervious and impervious surfaces, respectively. Employing non-
dimensionalisation Eq. (15) into Eq. (13) with Eq. (16), then one obtains the dimensionless frequency
equation for a pervious surface given as follows:

j Aij j� 0, �i, j � 1, 2, 3, 4, 5, 6� �49�
where

A11 � �2b4n�nÿ 1��gÿ 1�2 ÿ f�b1 � b2� ÿ �b2 � b3��d21�1g ~x1b4O2�Jn�� ~x1b4�1=2O=�gÿ 1��

� f2b4� ~x1b4�1=2O�gÿ 1�gJn�1�� ~x1b4�1=2O=�gÿ 1��,
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A15 � 2b4n�gÿ 1�� ~z1b4�1=2OJn�1�� ~z1b4�1=2O=�gÿ 1�� � 2b4n�1ÿ n��gÿ 1�2Jn�� ~z1b4�1=2O=�gÿ 1��,

A21 � 2b4n�nÿ 1��gÿ 1�2Jn�� ~x1b4�1=2O=�gÿ 1�� ÿ 2b4n�gÿ 1�� ~x1b4�1=2OJn�1�� ~x1b4�1=2O=�gÿ 1��,

A25 � b4f2n�1ÿ n��gÿ 1�2 � ~z1b4O
2gJn�� ~z1b4�1=2O=�gÿ 1�� ÿ 2b4�gÿ 1�� ~z1b4�1=2OJn�1�� ~z1b4�1=2O=�gÿ 1��,

A31 � fb3�d21�1 ÿ b2g ~x1b4O2Jn�� ~x1b4�1=2O=�gÿ 1��,

A41 �
"
2a4n�nÿ 1�

�
gÿ 1

g

�2

ÿf�a1 � a2� ÿ �a1 � a3�d21g ~xb4O2

#
Jn�� ~xb4�1=2Og=�gÿ 1��

� f2a4� ~xb4�1=2O�gÿ 1�=ggJn�1�� ~xb4�1=2Og=�gÿ 1��,

A45 � 2a4n�gÿ 1�=g� ~zb4�1=2OJn�1�� ~zb4�1=2Og=�gÿ 1�� � 2a4n�1ÿ n�
�
gÿ 1

g

�2

Jn�� ~zb4�1=2Og=�gÿ 1��,

A51 � 2a4n�nÿ 1�
�
gÿ 1

g

�2

Jn�� ~xb4�1=2Og=�gÿ 1�� ÿ 2a4n�gÿ 1�=g� ~xb4�1=2OJn�1�� ~xb4�1=2Og=�gÿ 1��,

A55 � a4

(
2n�1ÿ n�

�
gÿ 1

g

�2

� ~zb4O
2

)
Jn�� ~zb4�1=2Og=�gÿ 1�� ÿ 2a4�g

ÿ 1�=g� ~zb4�1=2OJn�1�� ~zb4�1=2Og=�gÿ 1��,

A61 � fa3d21 ÿ a2g ~xb4O2Jn�� ~xb4�1=2Og=�gÿ 1��,

A35 � A36 � A65 � A66 � 0,

A12, A16, A22, A26, A42, A46, A52, A56

� similar expression as A11, A15, A21, A25, A41, A45, A51, A55 with Jn and Jn�1

replaced by Yn and Ynÿ1 respectively,

A13, A33 � similar expression as A11, A31 with ~x1 and �d21�1 replaced by ~y1 and �d22�1, respectively,

A14 � similar expression as A11 with ~x1, �d21�1, Jn and Jn�1 replaced by ~y1, �d22�1, Yn and Yn�1

respectively,
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A23 � similar expressions as A21 with ~x1 replaced by ~y1,

A24 � similar expression as A21, with Jn, Jn�1 and ~x1 replaced by Yn and Yn�1 and ~y1, respectively,

A32, A62 � similar expression as A31, A61 with Jn replaced by Yn,

A34 � similar expression as A31 with ~x1, �d21�1 and Jn replaced by ~y1, �d22�1 and Yn, respectively,

A43, A63 � similar expression as A41, A61 with ~x and d21 replaced by ~y and d22, respectively,

A44 � similar expression as A41 with ~x, d21, Jn and Jn�1 replaced by ~y, d22, Yn and Yn�1, respectively,

A53 � similar expression as A51 with ~x replaced by ~y,

A54 � similar expression as A51 with Jn, Jn�1 and ~x replaced by Yn, Yn�1 and ~y, respectively,

A64 � similar expression as A61 with ~x, d21 and Jn replaced by ~y, d22 and Yn, respectively, �50�
Arguing on similar lines, one obtains the following dimensionless frequency equation for an impervious
surface:

j Bij j� 0: �i, j � 1, 2, 3, 4, 5, 6� �51�
In Eq. (51), the elements Bij are

B31 � fb2 ÿ b3�d21�1g� ~x1b4�3=2O3Jn�1�� ~x1b4�1=2O=�gÿ 1�� ÿ �b2 ÿ b3�d21�1� ~x1b4O2�g

ÿ 1�Jn�� ~x1b4�1=2O=�gÿ 1��,

B61 � fa2 ÿ a3d
2
1g� ~xb4�3=2O3Jn�1�� ~xb4�1=2Og=�gÿ 1�� ÿ fa2 ÿ a3d

2
1g ~xb4O2�gÿ 1�=gJn�� ~xb4�1=2Og=�gÿ 1��,

B32, B62 � similar expression as B31, B61 with Jn and Jn�1 replaced by Yn and Yn�1, respectively,

B33 � similar expression as B31 with �d21�1 and ~x1 replaced by �d22�1 and ~y1, respectively,

B34 � similar expression as B31 with Jn, Jn�1, �d21�1 and ~x1 replaced by Yn, Yn�1, �d22�1 and ~y1,

respectively,

B63 � similar expression as B61 with d21 and ~x replaced by d22 and ~y, respectively,

B64 � similar expression as B61 with Jn, Jn�1, d21 and ~x replaced by Yn, Yn�1, d22 and ~y, respectively,
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B11 � A11, B12 � A12, B13 � A13, B14 � A14, B15 � A15, B16 � A16,

B21 � A21, B22 � A22, B23 � A23, B24 � A24, B25 � A25, B26 � A26,

B41 � A41, B42 � A42, B43 � A43, B44 � A44, B45 � A45, B46 � A46,

B51 � A51, B52 � A52, B53 � A53, B54 � A54, B55 � A55, B56 � A56,

B35 � B36 � B65 � B66 � 0: �52�

In Eq. (52), Aij is de®ned in Eq. (50).
Eqs. (49) and (51) constitute a relation between hrÿ11 and O. Non-dimensional frequency O versus

hrÿ11 is computed for two materials whose material parameters have been de®ned in Section 5.2. The
obtained results are presented in Figs. 3 and 4. It is found that the frequency for an impervious surface
is less than that of a pervious surface, and the same is less for material-II than for material-I. A case of
dissipative medium can also be considered as in Biot (1956) and Tajuddin and Sharma (1980) which
needs further a massive amount of detailed analysis. We shall discuss such behaviour later.

Fig. 3. Non-axially symmetric vibrations: variation of frequency with h/r1 (composite cylinderÐI).
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7. Concluding remarks

The study of plane-strain vibrations of thick-walled hollow poroelastic composite cylinder is made for

two types of materials namely material-I and material-II, which are of acoustically softer and
acoustically sti�er in characteristic phenomenon. The limiting cases, when hrÿ11 <<1 and hrÿ11 >>1 are

discussed, representing thin poroelastic shell and poroelastic solid cylinder, respectively. Thus, the
investigation covers the plane-strain vibrations of thick-walled poroelastic hollow cylinders in the entire
range of the ratio hrÿ11 from zero to 1, so that a transition from plate, thereby shell vibrations to the

vibrations of a poroelastic solid cylinder can be seen. The investigation has led to the following
conclusions:

1. In case of an axially symmetric vibration

1.1. the extensional and shear modes exist uncoupled,

1.2. the shell modes of shear and extensional vibrations approach the modes of a poroelastic plate of
thickness h, as hrÿ11 4 0 for pervious and impervious surfaces,

1.3. the frequency equation in case of shear vibrations of thick-walled hollow poroelastic cylinder

reduces to that of poroelastic solid cylinder of radius h as hrÿ11 41,
1.4. frequency equations in case of extensional vibrations of thick-walled hollow poroelastic cylinder

reduces to that of analogous vibrations of poroelastic solid cylinder as hrÿ11 41,
1.5. the frequency for an impervious surface is higher than that of a pervious surface,
1.6. the frequency for material-II is, in general, higher than that of material-I.

Fig. 4. Non-axially symmetric vibrations: variation of frequency with h/r1 (composite cylinderÐII).
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2. In case of non-axially symmetric vibration
2.1. the extensional and shear modes are coupled.
2.2. the frequency for an impervious surface is lower than that of a pervious surface,
2.3. the frequency is less for material-II than for material-I.

3. For both axially and non-axially symmetric vibrations and given hrÿ11 , the plot of phase velocity
versus wave number is a rectangular hyperbola.
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